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A B S T R A C T

With a similar capability of processing spikes as biological neural systems, networks of spiking neurons are
expected to achieve a performance similar to that of living brains. Despite the achievement of spiking neuron
based applications, most of them assume noise-free condition for learning and testing. This assumption, though
fairly general, ignores the fact that noise widely exists in spiking neural networks (SNNs) and the neural
response can be significantly disturbed by noise. Therefore, how to deal with noise is an important issue in the
applications of SNNs. Here, by analyzing strategies employed to make spiking neurons robust to noise, also
inspired by biological neurons, we propose a strategy that train spiking neurons with a dynamic firing threshold
named noise-threshold. The noise-threshold can be applied by the existing supervised learning methods to
improve the noise tolerance of them. Experimental results show that, with a combination of noise-threshold, the
anti-noise capability of the existing supervised learning methods improves significantly, and the trained neuron
can precisely and reliably reproduce target sequences of spikes even under highly noisy conditions. More
importantly, the SNNs-based computational model equipped with a noise-threshold is more robust and can
achieve a good performance even with different types of noise. Therefore, the noise-threshold is significant to
practical applications and theoretical researches of SNNs.

1. Introduction

As the emerging evidence of precise spike-timing neural activities
has been observed in many brain regions, including the retina [1–3],
the lateral geniculate nucleus [4] and the visual cortex [5], the view that
information is represented by explicit timing of spikes rather than
mean firing rate has received increasing attention [6,7]. These findings
have led to a new way of simulating neural networks based on spiking
neurons which encode information by the firing times of spikes [8–10].
Theoretical analysis indicates that neural networks of spiking neurons
can arbitrarily approximate any continuous function, and furthermore,
it has been demonstrated that networks of spiking neurons are
computationally more powerful than sigmoidal neurons [11–14].

Spiking neurons can be used to construct a network that stores the
information in synapses between neurons [8,15,16]. Changing the
synaptic efficiency could result in acquiring new information. The
modified way of synaptic efficiency is determined by learning algo-
rithms [17]. Recently, learning schemes focusing on processing spatio-
temporal spikes in a supervised manner have been widely studied, and
many supervised learning algorithms have been proposed. These

methods can broadly be subdivided into two classes: spike-driven
methods and membrane potential-driven methods. Synaptic adaption
in spike-driven methods is driven by the error between the desired and
actual output spikes. The most popular one of spike-driven methods is
remote supervised method (ReSuMe) [18], which is composed of two
weight update processes: (1) strengthening synaptic weights by STDP
based on input spike trains and a desired output spike train; (2)
weakening the synaptic weights by anti-STDP based on input spike
trains and an actual output spike train. To enhance the learning
performance of ReSuMe, delay learning ReSuMe (DL-ReSuMe) [19]
and Multiple DL-ReSuMe (Multi-DL-ReSuMe) [20] are proposed to
merge the delay shift approach and ReSuMe-based weight adjustment.
Simulation results have shown that the proposed DL-ReSuMe and
Multi-DL-ReSuMe achieve learning accuracy and learning speed im-
provements compared with ReSuMe. Membrane potential-driven
methods emerged recently with the typical examples of perceptron-
based spiking neuron learning rule (PBSNLR) [21] and High-
Threshold Projection (HTP) [22]. They perform a perceptron classifi-
cation on discretely sampled time points of the voltage, with the aim to
keep the membrane potential below a firing threshold for all non-spike
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times and to ensure a threshold crossing at the desired output times
[23]. In addition to ReSuMe and PBSNLR, there are still many other
efficiency methods with the goal of training spiking neurons to generate
desired sequences of spikes [24–29].

Despite remarkable progress has been made in learning algorithms
of SNNs, many researches and applications just consider the simple
case where the neurons are trained and tested under noise free
condition. However, noise sources widely exist in SNNs, and can be
distinguished as intrinsic and extrinsic ones [8]. The main sources of
intrinsic noise are: (1) Johnson noise due to thermal fluctuations of
membrane resistance [30]; (2) open-close fluctuations of the ion
channels, which may originate from ion concentration fluctuations
[31]. Apart from intrinsic noise sources, extrinsic sources are mainly
due to signal transmission and network effects. It has been shown that
networks of excitatory and inhibitory neurons with fixed random
connectivity can produce highly irregular spike trains even in the
absence of any sources of noise [32,33]. The above noise sources will
certainly affect the timing accuracy and reliability of SNNs [34–36],
especially when we apply SNNs to hardware models [37,38].

Though there are also various noise sources in biological neural
networks, the brain responds rapidly and reliably to fine details in
sensory input. Experimental results provide evidence that the nervous
system can deal with noise to produce accurate and reliable response
[39–41]. However, the exact mechanisms employed remain unknown.
To increase some anti-noise capability of the trained SNNs, most of the
supervised learning methods adopt the strategy that train spiking
neurons in the presence of noise (i.e., noisy training). However, the
neuron trained under noisy conditions demonstrates relative high
robustness to noise only in response to the stimuli used during the
training, and the neuron responds highly unreliably to other stimuli
[18]. Recently, a new plasticity rule called Membrane Potential
Dependent Plasticity (MPDP) has been proposed [23]. The sensitivity
of the MPDP to the subthreshold membrane potential during the
training allows a robust memory retrieval after learning even in the
presence of noise. However, the learning efficiency of MPDP is
relatively low, and its anti-noise capability still could be improved.

In this paper, we propose a dynamic firing threshold named noise-
threshold for training spiking neurons. The noise-threshold could be
applied to the existing supervised learning methods to improve the
anti-noise capability. ReSuMe and PBSNLR, as the most typical
representative learning methods in SNNs, are selected to illustrate

how a noise-threshold could be combined with supervised learning
rules of SNNs. In a set of experiments, we demonstrate that: (1)
supervised learning methods combined with noise-threshold maintain
the advantages of the original algorithms that enable us to train spiking
neurons with a high accuracy and efficiency; (2) the neuron trained
with noise-threshold can precisely and more reliably reproduce target
firing patterns even under a relatively high level of noise; (3) a SNNs-
based computational model equipped with noise-threshold is more
robust, which is effective to deal with noisy data and can make a proper
decision even under highly noisy conditions. Therefore, noise-thresh-
old has wide application prospects and can be widely used in SNNs-
based models to improve their robustness.

The rest of this paper is organized as follows. In Section 2, the
learning rules of PBSNLR and ReSuMe are introduced. The basic idea
of noise-threshold and how noise-threshold could be combined with
supervised learning methods of SNNs are presented in Section 3. In
Section 4, some experiments are given to investigate the anti-noise
capability of noise-threshold. In addition, we explore the effects of
parameters involved in noise-threshold. Discussion of our method is
presented in Section 5. Conclusion and future work are presented in
Section 6.

2. Neuron model and supervised learning rules of spiking
neurons

ReSuMe and PBSNLR are the most typical examples of supervised
learning methods in SNNs. We take them to illustrate how noise-
threshold could be combined with existing supervised learning meth-
ods of SNNs. Therefore, in this section, the neuron model used in our
research and the basic ideas of ReSuMe and PBSNLR will be
introduced.

2.1. Neuron model

The leaky integrate-and-fire (LIF) model is considered in this
paper. The dynamics of each neuron evolves according to the following
equation

∑ ∑V t ω K t t V( ) = ( − ) +
j

ij
f

j
f

rest
(1)

where tj
f is the fth spike of presynaptic neuron j, and ωij is the synaptic
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Fig. 1. Dynamic of LIF neuron response. (a) Examples of input patterns. There are two patterns (blue and green) and each spike which is fired by pre-synaptic neuron is denoted by a
dot. (b) Membrane potential traces of the two input patterns. Each colored line corresponds to the pattern with the same color on left (top). Pattern one (in green) fires two spikes and
Pattern two (in blue) does not fire. (c) Normalized Postsynaptic kernel K(t) with membrane time constant τ = 10 msm and synaptic time τ = 2.5 mss . (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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weight from neuron j to neuron i. Vrest is the rest potential of the LIF
neuron, which is typically set as 0. K denotes the normalized PSP
kernel defined as
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where τm and τs denote the two decay time constants of membrane
integration and synaptic current, respectively. V0 is a parameter, which
is used to make the maximum value of unitary PSP to 1. K t t( − )j

f is a

causal filter that only considers spikes t t≤j
f .

The action potential (spike) is triggered if the membrane potential
V(t) of the neuron reach the threshold (thr) at time tfr:

V t and dV t
dt

( ) ≥ thr ( ) > 0.f
f

r
r

(3)

After firing, the membrane voltage V(t) resets to the rest potential
(V t( ) = 0), and stays at the resting level for a time period Ra, called the
refractory period.

The dynamics of the neuron model are illustrated in the left bottom
of Fig. 1.

2.2. ReSuMe learning rule

ReSuMe is a spike-driven supervised learning method of SNNs,
which aims to minimize the error between the desired and the actual
output spikes. According to ReSuMe, the synaptic weights are modified
according to the following equation:

∫d
dt

w t S t S t a W s S t s ds( ) = [ ( ) − ( )][ + ( ) ( − ) ],io d o d i
0

∞

(4)

where wio is the synaptic weight between the presynaptic neuron i and
the postsynaptic synaptic neuron o. s denotes a delay between the
presynaptic and postsynaptic firings. S(t) represents the spike train,
and Sd(t), So(t) and Si(t) are the target, post-, and presynaptic spike
trains, respectively. The spike trains have the following form

∑S t δ t t( ) = ( − ),
f

f

(5)

where f = 1, 2, … is the label of the spikes and δ n( ) is a Dirac function
with δ n( ) = 1 for n = 0 (or 0 otherwise). The kernel W(s) defines the
shape of a learning window

⎛
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τ
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(6)

where A is the maximal magnitude of the learning window and τ
denotes the time constant of the learning process. The sign of the error
signal (S t S t( ) − ( )d o ) decides the direction of the synaptic modification.
The kernel ∫a W s S t s ds+ ( ) ( − )d i0

∞
decides the amount of weight

change.

2.3. PBSNLR learning rule

The PBSNLR [21] transforms the supervised learning into a
classification problem using the perceptron learning rule, with the
aim to keep membrane potential below threshold at undesired spike
times and to make sure a threshold crossing at desired spike times. The
learning rule of PBSNLR can be expressed as
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Where wi is the weight of the ith synapse, and Pi
t is the sum of PSPs

induced by all the spikes that have arrived through the ith synapse at t.
dt is a signal to represent whether t is the desired output time. dt=1 (or
dt=0) means t is the desired (or undesired) output time. V(t) is the
membrane potential of the neuron at t. Fig. 2 gives a simple example to
illustrate the learning rule of PBSNLR.

3. Noise-threshold

In this section, first we propose the concept of noise-threshold.
Then, ReSuMe and PBSNLR are selected as examples to illustrate how
noise-threshold could be combined with supervised learning methods
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Fig. 2. Illustration of the PBSNLR learning rule. During the learning period, there are
two desired output times t (1)d and t (2)d . The red dots on the membrane potential trace

represent the positive and negative samples. All misclassified samples are trained using
PBSNLR which depends on two cases: (1) At the positive samples (desired output time),
if the membrane potential is below threshold, the synaptic weights should be potentiated;
(2) At the negative samples (not desired output time), if membrane potential is above
threshold (as shown in shaded area), the synaptic weights should be depressed.
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Fig. 3. Precision and reliability of neural response can be disturbed by noise. (a) After training, the trained neuron can emit a spike precisely at td in the absence of noise. (b) The
fluctuating noise would trigger an extra spike if the membrane potential is close to the threshold at Ntd. (c) The noise makes the membrane potential below threshold at td, then the
trained neurons will miss a desired spike.
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of SNNs.

3.1. Noise-threshold

The goal of supervised learning in SNNs is that the synaptic weights
are adjusted to make the membrane potential reach firing threshold at
the desired output time (td), otherwise let it below firing threshold at
the undesired output time (Ntd). Original learning methods train
spiking neurons with a fixed threshold, resulting in that the response
of the trained neuron can be easily disturbed by noise. Fig. 3 depicts
two basic ways of noise disturbing the trained neurons..

From Fig. 3, we can find that: (1) if the membrane potential is close
to threshold at Ntd, the probability of triggering a wrong spike will
increase. Therefore, to avoid an extra spike, the membrane potential at
Ntd should keep far away from the threshold; (2) to make sure that the
neuron will fire nearby td, the membrane potential around td should be
strong enough.

Based on the above analysis, we propose a dynamic firing threshold
named noise-threshold for spiking neurons during the learning pro-
cess. Noise-threshold divides the running time of a spiking neuron into
two classes denoted by t∼d and Ntd:

t t t i δ t i δ= {| ∈ [ ( ) − , ( ) + ]}∼
d d d (8)

Nt t t t i δ t i δ= { | ∉ [ ( ) − , ( ) + ]}d d d (9)

where td(i) denotes the moment of the ith spike in the desired spike
train and δ is a parameter determining the length of t∼d and Ntd . Fig. 4
gives an example to illustrate t∼d and Ntd . In the following, the definition
of noise-threshold based on Ntd and t∼d will be introduced, respectively.

3.1.1. Noise-threshold at Ntd
After a successful learning with supervised learning methods, the

membrane potential will below firing threshold at Ntd. Therefore, to
make the membrane potential far away from threshold, we can set a
small value for noise-threshold during learning process as

η t Ntn − thr = thr − ∈ d1 (10)

where η > 01 , and thr is the traditional fixed threshold. To better
illustrate how noise-threshold can keep the membrane potential far
away from threshold and the role of η1, we give a simple example in
Fig. 5.

What need attention is that noise-threshold is just used for learning
process, we test the performance of the trained neuron with traditional
fixed threshold. As shown in Fig. 5(c), after training with noise-
threshold, the membrane potential keeps far away from threshold to
avoid spurious firing.

3.1.2. Noise-threshold at t∼d

After a successful learning with supervised learning methods, the
membrane potential will reach threshold at td. To make the membrane
potential strong enough at t∼d , we can set a large value for noise-
threshold as

a t t i η t tn − thr = − [ − ( )] + thr + , ∈ ∼
d d

2
2 (11)

with constants η > 02 , a > 0. To better illustrate how noise-threshold

can keep the membrane potential strong enough at t∼d and the roles of
η2 and a, we give a simple example in Fig. 6.

In summary, the noise-threshold function we proposed can be
expressed as

⎪

⎪⎧⎨
⎩

η t Nt
a t t i η t t

n − thr =
thr − , if ∈
− [ − ( )] + thr + , if ∈ ∼

d

d d

1
2

2 (12)

Fig. 7 illustrates the difference between the noise-threshold and
traditional fixed threshold. What needs special attention is that we
utilize the noise-threshold only for learning processes, and traditional
fixed threshold to test the performance of the trained neurons.

3.2. Noise-threshold combined with ReSuMe (N-ReSuMe)

ReSuMe adjusts synaptic weights by desired and actual output
spikes. However, noise-threshold is based on the membrane potential
level. In order to make a combination of ReSuMe and noise-threshold
(N-ReSuMe), we change the spike generating mechanism of the spiking
neurons. During the learning process, firing occurs whenever the
membrane potential V(t) reaches the noise-threshold instead of thresh-
old. Fig. 8 illustrates the difference of spike generating mechanisms
between ReSuMe and N-ReSuMe..

N-ReSuMe merges the actual output spikes generated with noise-
threshold, the desired output spikes and ReSuMe-based weight adjust-
ment to update the synaptic weights. According to the N-ReSuMe
learning rule, the actual output spikes generated with noise-threshold
will cause a depression of synaptic weights to make the membrane
potential below the noise-threshold at Ntd , which leads the membrane
potential far away from traditional fixed threshold. In addition, at td,
the desired output spikes will potentiate the synaptic weights to make
the membrane potential equal to the noise-threshold.

3.3. Noise-threshold combined with PBSNLR (N-PBSNLR)

Both PBSNLR and noise-threshold are based on the membrane
potential level, to create a combination of noise-threshold and PBSNLR
(N-PBSNLR), we change the rule of PBSNLR as: (1) positive samples
are misclassified if the membrane potential of the neuron cannot reach
the noise-threshold at td; (2) negative samples are misclassified if the
membrane potential of the neuron exceeds the noise-threshold at Ntd.
Then, all of these misclassified samples are trained using N-PBSNLR.
Fig. 9 gives a simple example to illustrate the learning process of N-
PBSNLR..

As the noise-threshold is below threshold at Ntd , the misclassified
negative samples in Fig. 9 significantly outnumber those in Fig. 2.
These misclassified negative samples will be trained by N-PBSNLR
until the membrane potential is below the noise-threshold at Ntd . On
the other hand, the number of misclassified positive samples in Fig. 9 is
still larger than in Fig. 2. For example, in Fig. 2, t (2)d is a correct
classification that the membrane potential is above the threshold at the
desired output time. However, in Fig. 9, t (2)d is a misclassified sample.
According to N-PBSNLR, synaptic weights need to be modified until
the membrane potential reaches the noise-threshold at t (2)d .

Fig. 4. Illustration of the t∼d and Ntd . There are two desired output spikes (t (1) = 30 msd and t (2) = 70 msd ) in the total time duration. The parameter δ which determines the distribution

of t∼d and Ntd is set as 5 ms.
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4. Simulations

In this section, several experiments are presented to demonstrate
the learning capability of N-ReSuMe and N-PBSNLR. Next, we show
that spiking neurons trained with noise-threshold have a stronger anti-
noise capability. Then, we investigate the effects of parameters involved
in the noise-threshold approach. Finally, several simulations are
performed to test the performance of noise-threshold in practical
applications.

4.1. Learning sequence of spikes

In this section, we present a set of experiments to demonstrate that
spiking neurons trained according to N-ReSuMe and N-PBSNLR are
capable of learning and precisely reproducing desired sequences of
spikes. A spiking neuron with 400 synaptic inputs is trained to emit a
desired sequence of spikes. The length of input and desired output
spike trains is 400 ms. Every input and desired output spike train are
generated randomly according to a homogeneous Poisson process with
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the rate r = 10 Hz and 60 Hz, respectively. The initial synaptic weights
are selected as a uniform distribution in the interval [0, 0.04]. The
learning process and results of N-ReSuMe and N-PBSNLR are shown
in Figs. 10 and 11, respectively.

Fig. 10(a) and (b) represent the synaptic weights before and after
learning. Fig. 10(c) illustrates the evolution of the firing patterns
generated by the trained neuron in consecutive learning epochs. At
first, the actual output spikes are very different from the desired output
spikes. After several learning epochs, the gap gets smaller and smaller.
At about 125 epochs the actual output spike train becomes the same as
the desired one. In order to quantitatively evaluate the learning
performance, we use a correlation-based measure C [43] (C is assumed
0 for uncorrelated spike trains and 1 for perfectly matched firing
patterns). The measure C plotted as a function of learning epoch is
shown in Fig. 10(d), which indicates that the initial value of C is close to
0.2, and C increases to 1 after about 125 learning epochs..

Fig. 11 shows the learning performance of N-PBSNLR. At the
beginning, the trained neuron is observed to fire at arbitrary time,
resulting in a small C value. During the learning process, the neuron
gradually learns to produce spikes at the desired time, and that is also
reflected by the increasing of C. The learning accuracy is high after 45
learning epochs, and after about 15 more epochs leads to learning
success..

We next investigate the effect of different factors on learning
performance of N-ReSuMe and N-PBSNLR. The factors include the
spike trains total time duration (Tt), the firing rate of input spike trains
(Fin) and the firing rate of output spike trains (Fo). In the following, a
neuron with 400 synaptic inputs is considered. The input and desired
output spike train are generated randomly according to a homogeneous
Poisson process with a frequency Fin and Fo, respectively. For each
random pair of input and desired output spike trains, the correlation C
is calculated during each learning epoch. Each experiment is repeated
for 20 trials for different input and desired output pairs and the median
of C, denoted by Cm, is reported. To make a clear comparison, we
employ a strategy proposed in [19]. Each value of Cm is replaced by its
previous value if there is a drop in the value compared with its previous
one to smooth the Cm curve for both N-ReSuMe and N-PBSNLR. The
experimental results of N-ReSuMe and N-PBSNLR are shown in
Figs. 12 and 13, respectively.

Figs. 12 and 13 show the learning performance of N-ReSuMe and
N-PBSNLR, respectively. The experimental results show that the
learning accuracy and efficiency of N-ReSuMe and N-PBSNLR are
almost same with ReSuMe and PBSNLR, which means that N-ReSuMe
and N-PBSNLR maintain the advantages of the original ones that
enable us to train spiking neurons with a relatively high accuracy and
efficiency.
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threshold instead of threshold. The parameters in this figure are thr=1 mV, δ=5 ms, η1=0.4 mV, η2=0.1 mV, and a=0.01.
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Fig. 9. Illustration of N-PBSNLR learning rule. All misclassified samples are trained
using N-PBSNLR which depends on two cases: 1) At positive samples, if the membrane
potential is below the noise-threshold, the synaptic weights should be potentiated; (2) At
negative samples, if the membrane potential is above the noise-threshold (as shown in
shaded area), the synaptic weights should be depressed.

Fig. 10. The learning process and performance of N-ReSuMe (a) Initial synaptic weights. (b) Synaptic weights after learning. (c) Illustration of the learning process, which includes the
desired output spike train denoted by red ○ and the actual output spike trains after each learning epoch denoted by •. (d) Learning accuracy versus learning epoch. (a) Initial synaptic
weights. (b) Synaptic weights after learning. (c) Illustration of the learning process. (d) Learning accuracy vs. learning epoch. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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4.2. Anti-noise capability

In this part, we will investigate the anti-noise capability of the
neuron trained with N-ReSuMe and N-PBSNLR. A neuron with 400
synaptic inputs is considered. The input and desired output spike train
are generated randomly according to a homogeneous Poisson process
with a frequency Fin and Fo, respectively. Four training scenarios are
considered, i.e., ReSuMe, N-ReSuMe, PBSNLR and N-PBSNLR. After
training, the reliability of the target recall is tested against two noise
cases: (1) background noise on the membrane potential (2) input
jittering noise.

4.2.1. Training and recall with noise on the membrane potential
In this case, background voltage noise is considered as the noise

source. The trained neuron is subjected to background noise simulated
by injecting Gaussian white-noise voltage to the neuron. The mean
value of the noise voltage is 0, and its variance σb is systematically
increased in the range of [0.03, 0.33] mV. Each σb is repeated for 20
trials for different input and desired output pairs. These different input
and desired output spike trains are generated independently according
to a homogeneous Poisson process with a frequency Fin and Fo,
respectively. After training, the reliability of the target recall is tested
against background noise. For each value σb, a measure Cm of a

distance between the desired and actual output trains is calculated. The
experimental results are shown in Figs. 14 and 15.

Fig. 14 shows the anti-noise capability of ReSuMe and N-ReSuMe.
We observe that the correlation Cm of ReSuMe drops dramatically with
the increasing of noise. However, the correlation Cm of the neuron
trained by N-ReSuMe almost does not decline and always maintains
high values with the increase of σb. N-ReSuMe takes values between
0.83 and 1 for all σb in the range [0.03, 0.33] mV. These results
confirm that the neuron trained with N-ReSuMe is significantly less
sensitive to noise.

Fig. 15 reveals that the correlation Cm of both N-PBSNLR and
PBSNLR decreases when the Cm gradually increases. The accuracy
curve of PBSNLR declines relatively early and quickly. The correlation
Cm of N-PBSNLR is higher than that of PBSNLR with a range of noise
intensity [0.03, 0.33] mV. That is, the synaptic weights obtained by the
N-PBSNLR are more robust to the disruption of noise.

4.2.2. Training and recall with input spike time jitter
In this case, input jittering noise is considered as the noise source.

After learning, we jitter the input spike times. The jitter intervals are
randomly drawn from a Gaussian distribution with mean 0 and
variance σ ∈ [0.3, 3.3] msj . In addition, some spikes are randomly
canceled (with a probability of 0.1) or added (at the times generated

Fig. 11. The learning process and performance of N-PBSNLR. (a) Initial synaptic weights. (b) Synaptic weights after learning. (c) Illustration of the learning process, which includes the
desired output spike train denoted by red ○ and the actual output spike trains after each learning epoch denoted by •. (d) Learning accuracy versus learning epoch. (a) Initial synaptic
weights. (b) Synaptic weights after learning. (c) Illustration of the learning process. (d) Learning accuracy vs. learning epoch. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 12. The learning results and the comparison of learning performance between ReSuMe and N-ReSuMe. (a) Effect of the spike trains total time duration (Tt). The other parameters
Fin = 10 Hz, Fo = 100 Hz. (b) Effect of the firing rate of input spike trains (Fin). The other parameters Tt=400 ms, Fo = 100 Hz. (c) Effect of the firing rate of output spike trains (Fo). The
other parameters Tt=400 ms, Fin = 10 Hz.
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Fig. 13. The learning results and the comparison of learning performance between PBSNLR and N-PBSNLR. (a) Effect of the spike trains total time duration (Tt). The other parameters
Fin = 10 Hz, Fo = 100 Hz. (b) Effect of the firing rate of input spike trains (Fin). The other parameters Tt=400 ms, Fo = 100 Hz. (c) Effect of the firing rate of output spike trains (Fo). The
other parameters Tt=400 ms, Fin = 10 Hz.
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Fig. 14. Anti-noise capability of ReSuMe and N-ReSuMe against background voltage noise. (a) Effect of the spike trains total time duration (Tt). The other parameters Fin = 10 Hz,
Fo = 100 Hz. (b) Effect of the firing rate of input spike trains (Fin). The other parameters Tt=400 ms, Fo = 100 Hz. (c) Effect of the firing rate of output spike trains (Fo). The other
parameters Tt=400 ms, Fin = 10 Hz.
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Fig. 15. Anti-noise capability of PBSNLR and N-PBSNLR against background voltage noise. (a) Effect of the spike trains total time duration (Tt). The other parameters Fin = 10 Hz,
Fo = 100 Hz. (b) Effect of the firing rate of input spike trains (Fin). The other parameters Tt=400 ms, Fo = 100 Hz. (c) Effect of the firing rate of output spike trains (Fo). The other
parameters Tt=400 ms, Fin = 10 Hz.

M. Zhang et al. Neurocomputing 219 (2017) 333–349

340



by a 2 Hz homogeneous Poisson process). The resulting plots of Cm are
presented in Figs. 16 and 17.

Fig. 16 reveals that the jittering noise has a great effect on the
response of the neuron trained by ReSuMe and N-ReSuMe, reflecting
in the correlation Cm decreases significantly as the σj gradually
increases. However, the correlation Cm of N-ReSuMe is significantly
higher than that of ReSuMe. Therefore, the anti-noise capability
against jittering noise of N-ReSuMe is more robust.

From Fig. 17, we know that the correlation Cm of PBSNLR and N-
PBSNLR are both very high when the noise intensity is small. As the σj
gradually increases, the correlation Cm of the two methods decreases.
However, the extent of this decrease is much less for N-PBSNLR than
for PBSNLR. That is, the anti-noise capability of the neuron trained by
N-PBSNLR is better than PBSNLR.

4.3. Effects of the parameters of noise-threshold

Two of the major parameters involved in the concept of noise-
threshold are η1 and η2. In this section, N-PBSNLR is adopted to
investigate the effects of these parameters on the learning process and
anti-noise capability.

4.3.1. η1
The role of η1 (in Eq. (10)) is to keep the membrane potential far

away from the firing threshold at Ntd. To look into the effect of η1, a
single neuron with 200 synaptic inputs is considered. The neuron is
trained to output a desired spike train with a length of 400 ms. Every
input and desired output spike train are Poisson spike trains with rates
10 Hz and 30 Hz, respectively. After training, the reliability of the
target recall is tested under two cases: (1) testing without noise; (2)
testing against background Gaussian white noise with mean 0 and
σ = 0.2 mVb . The value of η1 varies from 0.2 to 5 mV. The experimental
results are shown in Fig. 18.

The correlation C of noise free testing (i.e., learning accuracy) keeps
high values with η1 varying from 0.2 to 2 mV, which means noise-
threshold has the advantage of parameter insensitivity. After that, C
drops obviously. Then we investigate the correlation C of under noise.
A larger η1 results in a larger C, but when η1 is increased above a
critical value (e.g., 1 mV in our experiments), the value of C will
decrease significantly. Fig. 18(b) shows that it will take more learning
epochs to make the membrane potential more far away from the
threshold at Ntd.

4.3.2. η2
We further conduct experiments to evaluate the effect of η2 (in Eq.

(11)) on the learning and anti-noise capability. In this experiment, the
values of η2 vary from 0.05 to 4 mV. After training, the reliability of the
trained neuron is tested against the same noise as in Fig. 18.

As shown in Fig. 19(a), during the increase of η2, the correlation C
of noise free testing decreases. For noise testing, when η2 varies from
0.05 to 0.25 mV, the correlation C of noise testing increases. After that,
the value of C decreases gradually. From Fig. 19(b), when η2 varies
from 0.05 to 0.6 mV, N-PBSNLR needs almost the same learning
epochs. However, when the value of η2 is above 0.8 mV, there is a clear
trend that N-PBSNLR needs more learning epochs with the increase of
η2.

4.4. The performance of noise-threshold in practical application

In the past decades, SNNs have been successfully applied to
different applications [44–53]. In this section, we adopt a computa-
tional model [17,54,55] (see Fig. 20) to conduct several experiments on
classifying patterns with noise-threshold. The model consists of three
parts: encoding part, supervised learning part, and readout part. The
encoding part is used to convert the input patterns into different spike
trains. The learning part tunes the synaptic weights to ensure that the
output part can respond to certain patterns correctly. The readout part
extracts information about the stimulus from a given neural response
[17].

4.4.1. Learning performance analysis of the noise-threshold
The XOR problem is a linearly nonseparable task, which is a

benchmark widely used for investigating the performance of SNNs
[21,55]. Thus, we use the XOR problem to investigate the performance
of noise-threshold on classification tasks first.

To convert the XOR problem as a classification problem of spike
trains, similar to the encoding strategy in [21,55], 0 and 1 are encoded
by 100 encoding neurons, respectively. Each encoding neuron gener-
ates spike train by a Poisson process with a mean frequency Fin. The
frequency for 0 is Fin = 5 Hz, and the frequency for 1 is Fin = 10 Hz.
The spike train total time duration (Tt) is 100 ms. These input spike
patterns corresponding to {1, 1} and {0, 0} are one class defined as
Class 1 and the input spike patterns corresponding to {1,0} and {0,1}
are defined as class Class 2. The readout part contains two neurons,
with each neuron corresponding to one category. The desired outputs
of the neurons corresponding to Class 1 and Class 2 are set to the spike
firing times [40,80] ms and [20,60]ṁs, respectively. when a pattern is
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Fig. 16. Anti-noise capability of ReSuMe and N-ReSuMe against jittering noise. (a) Effect of the spike trains total time duration (Tt). The other parameters Fin = 10 Hz, Fo = 100 Hz. (b)
Effect of the firing rate of input spike trains (Fin). The other parameters Tt=400 ms, Fo = 100 Hz. (c) Effect of the firing rate of output spike trains (Fo). The other parameters Tt=400 ms,
Fin = 10 Hz.
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present, the corresponding neuron is trained to produce target spikes,
and the other neuron is trained to keep silent (not to spike). Fig. 21 (a)
and (b) show the learning performance of PBSNLR and N-PBSNLR,
respectively.

Fig. 21 shows both PBSNLR and N-PBSNLR can train the neuron to
solve the XOR problem successfully. When patterns of {1,1} and {0, 0}
present, the corresponding neuron will fire spikes at 40 ms and 80 ms.
When patterns of {1, 0} and {0, 1} present, the corresponding neuron
will fire spikes at 20 ms and 60 ms, respectively. Moreover, in Section
3, we have analysed that to make a neuron robust to noise, we should:

(1) keep the membrane potential far away from the threshold value at
Ntd; (2) the membrane potential around td should be strong enough.
To observe whether this is indeed the case in our experiment, we trace
the membrane potential trajectories of neuron trained with different
methods. Comparing of the membrane potential trajectories observed
after PBSNLR and N-PBSNLR, we find that, at Ntd, the membrane
potentials of the neuron trained with N-PBSNLR (see Fig. 21(b)) are
much lower than PBSNLR (see Fig. 21(a)). In addition, the membrane
potential obtained by N-PBSNLR gets close to the threshold only
shortly before the firing times, and the value of the membrane potential
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Fig. 17. Anti-noise capability of PBSNLR and N-PBSNLR against jittering noise. (a) Effect of the spike trains total time duration (Tt). The other parameters Fin = 10 Hz, Fo = 100 Hz.
(b) Effect of the firing rate of input spike trains (Fin). The other parameters Tt=400 ms, Fo = 100 Hz. (c) Effect of the firing rate of output spike trains (Fo). The other parameters
Tt=400 ms, Fin = 10 Hz.
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Fig. 18. Effect of η1 on the learning and anti-noise capability. (a) Correlation C of noise testing and noise-free testing. (b) Learning epochs with different values of η1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.6 0.8 1.0 1.5 2 4
0

0.2

0.4

0.6

0.8

1
1.1

variance of η2

C

testing without noise
testing under noise

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.6 0.8 1.0 1.5 2 4
0

50

100

150

200

250

variance of η2

le
ar

ni
ng

 e
po

ch
 

Fig. 19. Effect of η2 on the learning and anti-noise capability. (a) Correlation C of noise testing and noise-free testing. (b) Learning epochs with different values of η2.
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is a little above the threshold at td. These observations confirm our
theoretical prediction.

4.4.2. Optical character recognition (OCR)
To evaluate the robustness of noise-threshold in practical applica-

tions, similar to the setup in [55,56], an OCR task is considered in this
experiment. A set of opticall characters of 0–9 are used. Each image
has a size of 20×20 black/white pixels. The samples of OCR are
illustrated in Fig. 22 (a). The phase encoding method proposed in
[55,56] is used to convert the images into spatiotemporal spike
patterns. Fig. 22 (b) shows an encoding result with phase coding

method. The output spikes are sparsely distributed over the time
window.

We select 10 neuron to learn to different patterns, with each
learning neuron corresponding to one category. Each neuron is trained
to produce a target spike train ([40, 80, 120, 160] ms) when a pattern
from the assigned class is presented, and not to spike when patterns
from other classes are presented [55,56]. To study the robustness, after
learning, the reliability of the target recall is tested against two noise
cases: (1) background noise on the membrane potential; (2) input
jittering noise. The relative confidence criterion is used for making
decision, where the input pattern will be decided by one of the neurons
that generates the most closest spike train to the target spike train.
Figs. 23 and 24 show the robust performance of different learning
algorithms against background noise and jittering noise, respectively.

Fig. 23 shows that the performances of ReSuMe, PBSNLR, and DL-
ReSuMe decrease with the increasing noise level. Spiking neurons
trained by N-ReSuMe, N-PBSNLR, and N-DL-ReSuMe can obtain a
100% classification accuracy even when the noise level is high
(σ = 0.4 mVb ). Therefore, The robustness of the supervised learning
algorithms improved significantly with noise-threshold.

As can be seen from Fig. 24, the performances of all the learning
rules decrease with the increasing noise level. The accuracies of
ReSuMe, PBSNLR, and DL-ReSuMe drop more obviously than N-
ReSuMe, N-PBSNLR, and N-DL-ReSuMe, respectively. That is, the
synaptic weights obtained by N-ReSuMe, N-PBSNLR, and N-DL-
ReSuMe are more robust than those of ReSuMe, PBSNLR, and DL-
ReSuMe.

Fig. 20. General structure and information process of the SNN [54]. It contains three
functional parts: encoding, learning, and readout. The encoding part is used to convert
the input patterns into different spike trains. The learning part tunes the synaptic weights
to ensure that the output part can respond to certain patterns correctly. The readout part
extracts information about the stimulus from a given neural response.
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(a) Membrane potentials of the neurons after training with threshold (PBSNLR)
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Fig. 21. Performance of the noise-threshold on the XOR problem. (a) Membrane potentials of the neurons after training with threshold (PBSNLR). (b) Membrane potentials of the
neurons after training with noise-threshold (N-PBSNLR).
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4.4.3. Image recognition
Recently, a computational model in which visual information is

encoded into precisely timed action potentials has been proposed for
pattern recognition [54]. We adopt this computational model, as shown
in Fig. 25, to explore the performance of noise-threshold in practical
applications.

The Latency-phase encoding method proposed in [54,57] is used as
the encoding mechanism to convert the images into different spike
patterns and then transmit them to a spiking neural network for
learning. Due to the good robust performance in previous experiments,
N-PBSNLR is selected to adjust synaptic weights to make the learning
neuron output desired sequences of spikes for different images. we
predefine three different target spike patterns for input images. For

simplicity, each desired pattern is defined as a sequence of seven
spikes, [130, 180, 230, 280, 330, 380, 430] ms for image1, [150, 200,
250, 300, 350, 400, 450] ms for image2, and [170, 220, 270, 320, 370,
420, 470] ms for image3. The classification results are shown in
Fig. 26.

As shown in Fig. 26, before training, the output neuron fires at
random times. After several iterations of training, the learning neuron
is able to reproduce different desired sequences of spikes when
different input patterns are given, which means that the network could
recognize all three images successfully.

Next, comparison experiments are implemented between PBSNLR
and N-PBSNLR. After learning, we test the performance of the trained
SNN on noisy data and noisy conditions. Noisy data is simulated by
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Fig. 22. (a) OCR samples. Each image has a size of 20×20 black/white pixels. (b) Phase encoding results of a given image sample. Each dot denotes a spike.
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Fig. 23. Robustness of different learning algorithms against the background noise on the membrane potential. (a) Robustness of the ReSuMe and N-ReSuMe. (b) Robustness of the
PBSNLR and N-PBSNLR. (c) Robustness of the DL-ReSuMe and N-DL-ReSuMe.
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Fig. 24. Robustness of different learning algorithms against the jittering noise. (a) Robustness of the ReSuMe and N-ReSuMe. (b) Robustness of the PBSNLR and N-PBSNLR. (c)
Robustness of the DL-ReSuMe and N-DL-ReSuMe.
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adding partially occluded, salt-and-pepper noise to the input images,
and noisy condition is simulated by injecting Gaussian white noise
voltage to the output neuron. The partially occluded noise is specified
by the area of occluded n, the salt-and-pepper noise is specified by the
noise intensity d, and the background noise is specified by the variance
σb. For each kind of noise with different intensities, 50 experiments are
carried out. The experimental results are shown in Fig. 27.

From Fig. 27(b), when the neuron is trained with PBSNLR,
different types of noise have a great effect on the learning results.
With the increase of noise intensity, the correlation C between the
desired and actual output spikes decreases significantly. However, as
shown in Fig. 27(c), the neuron trained with N-PBSNLR are more
robust to different types of noise, and the correlation C keeps a high
value even in high level of noise.

In [54], to improve the robustness of the SNN, different types and
intensities of noise are added to images during training (i.e., noisy
training). It should be noted that, the SNN trained under noisy

condition demonstrates high robustness only to the noise during
training, and it responds highly unreliably to other noise. The SNN
trained with noise-threshold does not have this limitation. After
deterministic training with noise-threshold, the SNN has a strong
anti-noise ability to different types and intensity of noise.

5. Discussion

5.1. Comparison with the existing methods

To increase some anti-noise capability of the trained SNNs, the
existing supervised learning methods adopt the strategy that train
spiking neurons in the presence of noise (i.e., noisy training)
[18,21,27,42,56]. However, the neuron trained under noisy conditions
demonstrates relative high robustness to noise only in response to the
stimuli used during the training, and the neuron responds highly
unreliably to other stimuli [18]. However, the neurons trained with

Fig. 25. General structure and information process of the SNN [54]. It contains three functional parts: encoding, learning, and readout. The encoding part is used to convert images into
spike trains. After encoding, each spike train is received by one input neuron of the SNN, With a predefined target pattern for each input pattern, the SNN equipped with a supervised
learning method is trained to recognize different patterns.
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Fig. 26. Classification results of three images by N-PBSNLR. The firing threshold of spiking neurons is represented by thr. At first, the output neuron fires at random times. After
training, and the trained neuron can output desired output spike trains for different images.
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noise-threshold does not have this limitation. After deterministic
training with noise-threshold, the SNN has a strong anti-noise ability
to different types and intensity of noise. More importantly, noise-
threshold can improve the robustness of SNN-based computational
models, which is effective to deal with noisy data and can make a
proper decision even under highly noisy conditions. Therefore, the
proposed method will significantly promote researches and applica-
tions of spiking neural networks (SNNs).

5.2. Generality to different learning algorithms

ReSuMe and PBSNLR are selected as examples to show how noise-
threshold could be combined with existing supervised learning algo-
rithms of SNNs. If noise-threshold is limited only in ReSuMe and
PBSNLR, its practicability will be largely restricted. Therefore, some
generalizations of noise-threshold should be discussed. According to
the properties of noise-threshold, we can summarize how to combine
noise-threshold with different learning methods. For spike-driven
methods, such as ReSuMe, SpikeProp, PSD, etc., we just need to
change the spike generating mechanism. During the learning process,
the neuron will emit an actual output spike whenever the membrane

potential reaches the noise-threshold. Then, spike-driven methods can
use actual and desired output spikes as signals to modify synaptic
weights. The purpose of membrane potential-driven methods is to
make the membrane potential above (or below) the threshold at td (or
Ntd) [21,28]. To create a combination with noise-threshold, we just
need to change the rules to make membrane potential above (or below)
noise-threshold at td (or Ntd).

5.3. Different definitions of noise-threshold

In Section 3, noise-threshold is defined as Eq. (12). However, the
definitions of noise-threshold can be various. The value of noise-
threshold just need to below threshold at Ntd, and a little above
threshold at td. Fig. 28 gives some examples of different definitions of
noise-threshold. In our future work, we will try to compare anti-noise
capability of different definitions and select the best one for SNNs.

5.4. Anti-noise capability vs learning accuracy and efficiency

By keeping the membrane potential far away from the threshold at
Ntd and making membrane potential strong enough at td, experimen-
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Fig. 27. Test results with different types of noise added to the input images and SNN. (a) Examples of different types of noise added to the input images and networks. (b) Response of
the network trained by PBSNLR. The correlation C between output spike train and the desired spike train is used to evaluate the precision of the neural responses. (c) Response of the
network trained by N-PBSNLR.
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tal results reveal that noise-threshold does improve the robustness of
spiking neurons significantly. However, training with noise-threshold
requires a little more learning epochs and gives up learning accuracy to
a certain extent.

As shown in Fig. 18(b), more learning epochs are needed as η1
increases. The reason for more learning epochs is that, combined with
noise-threshold, the conditions of a successful learning is more
rigorous. Noise-threshold requires the membrane potential far away
from the threshold at Ntd instead of just below it. Therefore, it will take
more learning epochs to find the proper synaptic weights.

To make sure that the neuron will fire around any td, we set
a t t i ηn − thr = − [ − ( )] + thr +d

2
2 at t∼d . However, this setting will give

up learning accuracy to a certain extent. In Fig. 19(a), with the increase
of η2, learning accuracy decreases significantly. Fig. 29 explains the
reason for this phenomenon.

According to the noise-threshold, the actual firing time is very close
to the desired one with a distance less than δ ( t t δ| − | <d a ). Therefore,
learning accuracy can be improved by adjusting the parameter δ.

5.5. About biological plausibility

The biological plausibility of noise-threshold can be embodied in
the dynamic variation of firing threshold during the learning process.
The biological findings in cat visual cortical and hippocampal neurons
most directly confirm the variability of the firing threshold [58,59], and
there are at least two separate factors that contribute to this variation:
(1) fast rates of membrane potential change prior to the action
potential are associated with more hyperpolarized thresholds (in-
creased excitability); (2) the occurrence of other action potentials in
the 1 s prior to any given action potential is associated with more
depolarized thresholds (decreased excitability) [59].

6. Conclusion and future work

In this paper, we have put forward a dynamic firing threshold
(noise-threshold) for training spiking neurons. With a combination of
noise-threshold, the anti-noise capability of the existing supervised
learning methods of SNNs have improved significantly, and the trained
neuron is precisely and more reliably to reproduce target firing patterns
even under high level noise. More importantly, noise-threshold can
improve the robustness of SNNs-based computational models.
Therefore, the proposed method will significantly promote researches
and applications of spiking neural networks (SNNs).

For simplicity, in our experiments, we only investigate the anti-
noise capability of noise-threshold defined as Eq. (12). In future work,
we will try to compare anti-noise capability of different definitions and
select the best one for SNNs. Another direction of our future work is to
design a biological plausible SNNs-based computational model. The
proposed model is expected to perform rapid and robust pattern
recognition with a combination of noise-threshold.
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